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Triple-axis X-ray diffractometry was used to study diffuse scattering from an

AlAs/GaAs superlattice grown on an [001]-oriented GaAs substrate by

molecular beam epitaxy. Reciprocal-space maps were obtained around the

002 re¯ection from the superlattice and its low-angle ®rst-order satellite. The

data obtained reveal quasi-Bragg diffuse-scattering sheets caused by conformal

behavior of interfacial roughness as well as ampli®cation of diffuse scattering

when the incoming or outgoing angle is nearly equal to the Bragg angle of the

superlattice or substrate. The observed features of diffuse-scattering ®ne

structure are explained within the framework of the distorted-wave Born

approximation. Nevertheless, this approximation is shown to be incorrect for

quantitative analysis of diffuse scattering. In particular, the observed domina-

tion in intensity of the incoming Bragg features over the outgoing ones is shown

to re¯ect the decay rate of the coherent X-ray ®eld through the diffuse-

scattering channel, which is not negligible relative to the coherent diffraction.

1. Introduction

X-ray diffuse scattering from multilayers and superlattices has

been the subject of many studies in the last decade. Signi®cant

scienti®c progress in X-ray diffuse scattering from amorphous

multilayers was made at that time. It started with studies

(Andreev et al., 1988; Bruson et al., 1989; Savage et al., 1991;

Kortright, 1991; Stearns, 1992) where coherent replication of

rough multilayer interfaces was shown to cause resonant

ampli®cation of diffuse scattering, resulting in observation of

`quasi-Bragg' diffuse scattering. Another diffraction effect is

resonant ampli®cation of diffuse scattering when the incoming

or outgoing angle is nearly equal (within Darwin's table) to

the Bragg angle. This effect was observed experimentally for

the ®rst time by Kortright & Fischer-Colbrie (1987), Savage et

al. (1991) and Kortright (1991). It was qualitatively explained

as a standing-wave effect for the incident and diffusely scat-

tered X-ray ®elds. Numerical theoretical calculations of the

phenomenon under discussion were performed by extending

the distorted-wave Born approximation (DWBA), previously

used to calculate diffuse scattering from single surfaces by

Sinha et al. (1988), to the case of multilayers (HolyÂ &

Baumbach, 1994; Kopecky, 1995).

The case of X-ray diffuse scattering from superlattices is

more complicated. One of the most important reasons for that

is the inevitable presence of a terrace structure (Gibaud et al.,

1993; Sinha et al., 1994; Headrick et al., 1995; Jenichen et al.,

1996; Kondrashkina et al., 1997; Darhuber, Zhu et al., 1998;

HolyÂ, Darhuber, Stangl, Bauer et al., 1998; Clarke et al., 1999).

As a result, both interfacial roughness and lattice strain

become anisotropic in the lateral directions, which leads to

observation of diffuse-scattering dependence on the azimuthal

sample orientation. In the case of small-angle Bragg re¯ec-

tions from multilayers, diffuse scattering is caused only by

electron-density ¯uctuations at interfaces (interfacial rough-

ness). In contrast to that, in the case of lattice Bragg re¯ections

from superlattices and their satellites, diffuse scattering is also

caused by variations in lattice strain depending on lateral

coordinates. Furthermore, in contrast to the case of non-

epitaxic multilayers, replication of interfacial pro®les across

the layer stack can be more intricate in superlattices (Head-

rick et al., 1995; Jenichen et al., 1996; HolyÂ, Darhuber, Stangl,

Bauer et al., 1998). Nevertheless, the interest in the diffuse-

scattering method increased recently, particularly in connec-

tion with creation of novel semiconductor devices such as

quantum dots or wires (Darhuber et al., 1995, 1996, 1997;

Giannini et al., 1997; Darhuber, Holy et al., 1998; HolyÂ,

Darhuber, Stangl, Zerlauth et al., 1998; HolyÂ et al., 2000;

Zhuang et al., 2000).

In this article, we report our results of a high-resolution

X-ray diffraction study of diffuse-scattering ®ne structure in

the vicinity of a high-angle Bragg re¯ection from an AlAs/

GaAs superlattice. In x2, DWBA is used to perform qualitative

analysis of diffuse scattering. The generalized analytic

expression for the diffuse-scattering cross section is obtained,

which allows us to classify clearly the ®ne-structure features of
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diffuse scattering in the vicinity of high-angle superlattice

Bragg re¯ections. These features are the quasi-Bragg, quasi-

specular, incoming and outgoing Bragg scattering. In x3, the

experimental conditions are described. In x4, the experimental

data obtained are presented and discussed. DWBA is shown to

be acceptable for the qualitative description of diffuse scat-

tering only. The quantitative calculation of the diffuse-scat-

tering cross section needs to take into account the multiple

diffuse-scattering events.

2. Distorted-wave Born approximation

In order to calculate X-ray scattering from any object, it is

necessary to solve the wave equation

��� k2�E�r� � V�r�E�r�; �1�
where k � 2�=� is the wavevector, V�r� � 4�r0��r� is the

scattering potential, r0 is the classical electron radius, ��r� is

the electron density and E�r� is the solution. Here, � polari-

zation of the incident beam is implied, which allows us to

exclude the polarization of waves from consideration. Since

the wavevector of a diffusely scattered X-ray photon slightly

differs from that of a specular re¯ected wave, the equation

obtained can be easily extended to the case of � polarization

by using the usual polarization factor.

DWBA can be applied to solve equation (1) if it is possible

to split the scattering potential into two nonequivalent parts:

V�r� � V0�r� ��V�r�;
where V0�r� is the basic potential, for which solutions of the

wave equation are known, and �V�r� is a small perturbation.

Within the framework of these presumptions, the scattering

amplitude can be written in the following form (Taylor, 1972):

f �k0 ! k1� � f0�k0 ! k1� �
1

4�
hE; k1ÿj�V�r�jE; k0i; �2�

where f0�k0 ! k1� is the amplitude of scattering from the

potential V0�r� of the incoming plane wave with vector k0 into

the outgoing plane wave with vector k1 and jE; k0i � Ek0
is

the solution of (1) with V�r� � V0�r� for the incident plane

wave with vector k0. The state jE; k1ÿi is more intricate. If

photoabsorption and inelastic scattering, which cause dissi-

pation of coherent wave energy, are neglected, the state

jE; k1ÿi is a time-inverted solution for the incident plane

wave with the vectorÿk1. Note that time inversion of the state

is equivalent to complex conjugation of the state. Thus,

jE; k1ÿi � E�ÿk1
:

Expression (2) for the scattering amplitude allows one to

obtain the differential cross section of scattering

d�

d

� jf �k0 ! k1�j2: �3�

Applying DWBA to the case of diffraction from super-

lattices with rough interfaces, it is natural to de®ne V0�z� as the

laterally symmetrical part of the whole potential

V0�z� � hV�r�ix;y;

where x, y are the lateral axes and z is the axis normal to the

lateral planes (Fig. 1). Note that values of the momentum-

transfer projections on the lateral plane of diffusely scattered

X-rays are small relative to the reciprocal superlattice vectors,

which allows one not to take into account the periodicity of

V�r� at the atomic scale lengths in lateral directions. Corre-

spondingly, the perturbation part of the potential can be

de®ned as

�V�r� � V�r� ÿ V0�z�:
The diffuse-scattering amplitude can be calculated from the

second term of equation (2):

�f �k0 ! k1� �
1

4�

Z
Ek0

Eÿk1
�V�r� dr: �4�

Equation (4) transforms into the well known Born approxi-

mation if the incoming and outgoing angles (Fig. 1) are far

from the Bragg angle. In this case, Ek0
� exp�ik0r�,

Eÿk1
� exp�ÿik1r� and �V�r� � 4�r0���r�, which allows one

to obtain

�f �k0 ! k1� � r0

R
���r� exp�ÿiq � r� dr;

where q � k1 ÿ k0 is the momentum transfer.

Let the solutions of (1) with V � V0 be known and able to

be written in the following form:

jE; k0i � Ek0
� �T0�z� exp�ik0zz� � R0�z� exp�ÿik0zz��
� exp�ik0xx� ik0yy�;

where T0�z� and R0�z� are slowly varying functions of z

corresponding to the amplitudes of the transmitted and

specularly re¯ected waves, and then the conjugate state can be

written as

jE; k1ÿi � E�ÿk1
� �T�1 �z� exp�ik1zz� � R�1�z� exp�ÿik1zz��
� exp�ik1xx� ik1yy�:

Substitution of these forms of states in (4) and (3) gives the

following expression for the diffuse-scattering cross section:

Figure 1
Geometry of the diffuse-scattering experiment: the axis z is normal to the
lateral planes; the lateral axis x lies in the specular diffraction plane
de®ned by the incident and specularly re¯ected wavevectors; the lateral
axis y is normal to this plane (azimuthal direction); k0 is the wavevector of
the incident plane wave; k1 is the wavevector of the diffusely scattered
wave; �0 and �1 are the incoming and outgoing angles, respectively.
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d

� r2

0

���� Z ���r��T0T1 exp�ÿiqzz� � R0T1 exp�ÿi�z�

� T0R1 exp�i�z� � R0R1 exp�iqzz��

� exp�ÿiqxxÿ iqyy� dr

����2; �5�

where � � k0z � k1z. Note that the expression obtained is

valid for the superlattice Bragg re¯ections as well as for the

substrate Bragg re¯ections. There is some difference that the

spatial locations of V0�r� and �V�r� do not intersect in the ®rst

case, but this difference is not principal. The degree of

coherence of V0�r� and �V�r� is much more important.

Expression (5) allows one to perform a physically clear

classi®cation of diffuse-scattering features, which can be

observed in the reciprocal space near the specular Bragg

re¯ections. First, it is necessary to note that the ®rst three

terms in (5) describe the appearance of diffuse scattering in

various regions of the reciprocal space, excluding some

speci®c regions such as a Bragg point.

2.1. Quasi-Bragg diffuse scattering

The ®rst term T0T1 in (5) describes the diffuse scattering

that can be calculated in the Born approximation if

T0�z� � T1�z� � 1. It is well known that the conformal beha-

vior of interfacial roughness through the layer stack of the

multilayer causes resonant ampli®cation of diffuse scattering

generating a quasi-Bragg sheet in the reciprocal space near the

small-angle Bragg re¯ections from multilayers (Andreev et al.,

1988; Bruson et al., 1989; Savage et al., 1991; Kortright, 1991;

Stearns, 1992). In this case, the condition of quasi-Bragg

diffuse scattering can be written as

qz � Q; �6�
where Q � 2�=� is the reciprocal-space vector and � is the

period of the multilayer. The reason for this scattering can be

explained easily taking into account the translation symmetry

of potential �V�r� with vector K.

Obviously, a similar effect occurs in the case of high-angle

Bragg re¯ections from superlattices with the same resonant

condition as equation (6). In contrast to the case of small-

angle Bragg re¯ection, there are two interconnected origins of

�V�r� in this case. The ®rst origin is interfacial roughness,

which is the same as in the case of small-angle Bragg re¯ec-

tions. The second origin is variations in the lattice strain

depending on lateral coordinates. Though the second origin is

caused by the ®rst one, their in¯uence on diffuse scattering

near the basic lattice Bragg re¯ection and its satellite is

different. Only strain variations can provide the appearance of

a quasi-Bragg sheet near the basic lattice re¯ections. As for

the superlattice satellites, both interfacial roughness and strain

variations are important.

Thus, coherent replication of interfacial roughness and

strain variations from one bilayer to another causes resonant

ampli®cation of diffuse scattering, resulting in the appearance

of a quasi-Bragg sheet in the reciprocal space. The extent of

quasi-Bragg diffuse scattering in the qz direction, �qz, is the

same as for the specular Bragg re¯ection if the interfacial

roughness is completely correlated through the layer stack.

Otherwise, if the roughness is partially correlated in the

vertical direction, this value is greater compared to the spec-

ular Bragg re¯ection (Stearns, 1992). It is quite evident that

the degree of vertical correlation depends on a lateral length

scale of roughness. At large scales, the roughness must be

completely correlated (Stearns, 1992). At the same time, the

contribution from the longer scale roughness to the diffuse-

scattering cross section dominates (de Boer, 1996). Thus, the

use of a conventional experimental technique with the inte-

gration of diffuse-scattering intensity over qy provides the fact

that the value of �qz depends weakly on qx and is approxi-

mately the same as for the case of specular Bragg re¯ection.

This effect was observed repeatedly for small-angle Bragg

re¯ection from multilayers (Gullikson et al., 1997; Chernov et

al., 2000).

The resonant ampli®cation discussed provides domination

of the contribution of the conformal part of �V�r� to the

diffuse-scattering cross section over that of the non-conformal

part of �V�r�. Substitution of the non-conformal part of

�V�r� in the ®rst term of (5) gives a diffuse halo around the

Bragg point. Spread of this halo in the reciprocal space is

de®ned by the mean sizes of roughness defects in the real

space.

2.2. Incoming and outgoing Bragg scattering.

The second and third terms in (5) provide resonant ampli-

®cation of diffuse scattering forming the incoming and

outgoing Bragg features when the amplitude R0 or R1 reaches

maximum or when

�0 � �B or �1 � �B;

where �0, �1 are the incoming and outgoing angles (Fig. 1),

respectively, and �B is the Bragg angle. The breadth of the

incoming and outgoing Bragg features in the qz direction are

de®ned by the R amplitude. Thus, as in the case of quasi-Bragg

scattering, the pro®les of the incoming and outgoing Bragg

features in the qz direction are replicated from the specular

re¯ectivity curve, but with the corresponding translation in

this direction versus qx.
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Figure 2
Origin of the (a) incoming and (b) outgoing Bragg features in the case of
Bragg re¯ection from the substrate.
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The origin of the features discussed can be explained

especially easily in the case of a Bragg re¯ection from the

substrate. There may be two different orders of scattering

events (Fig. 2). In the ®rst case, the primary beam with the

substrate's Bragg angle of incidence is re¯ected by the

substrate and then the re¯ected beam is diffusely scattered by

the superlattice, generating the incoming Bragg feature (Fig.

2a). However, the order of the events can be inverted. In spite

of the angle of incidence of the primary beam, the small-angle

diffuse scattering is effectively re¯ected if its angle of inci-

dence on the substrate is nearly equal to the substrate's Bragg

angle, generating the outgoing Bragg feature (Fig. 2b). These

processes are of a dynamical nature because the incoming and

outgoing features are visible if the substrate's Bragg re¯ec-

tivity is not vanishingly small. Moreover, the standing-wave

and other dynamical effects can play an important role in

diffraction if the sources of diffuse scattering [potential �V�r�]
in the superlattice are located coherently relative to the

substrate lattice. A similar explanation can be found for the

superlattice features. Although it is impossible to separate the

scattering events in time so clearly as in the case of the

substrate's Bragg peak, the basic physical mechanism of this

phenomenon is the same.

In contrast to the previous case of quasi-Bragg scattering, it

is quite easy to show with (5) that the contribution of the

conformal part �V�r� to the intensity of the incoming and

outgoing Bragg features is effectively dumped. Thus, the non-

conformal interfacial roughness can play an important role in

the case of incoming and outgoing Bragg scattering.

In connection with the features discussed, it is necessary to

consider the in¯uence of the standing-wave effect on diffuse

scattering. Let us assume that the angle of incidence is such

that the nodes of the standing wave are located at the inter-

faces of the superlattice. Then, in this case, diffuse scattering

must be dumped and one can observe breaks in diffuse-scat-

tering intensity (Kortright & Fischer-Colbrie, 1987). Never-

theless, the term R0T1 alone evidently cannot provide these

breaks. The discussed effect appears if the interference of the

terms R0T1 and T0T1 is included, which is not surprising

because the standing wave is caused by interference of T0 and

R0 waves. Experimental observation of the standing-wave

effect near the Bragg point is evidently dif®cult owing to the

domination of the specular re¯ectivity signal in this case.

Nevertheless, it is easy to perform this in the regions of the

reciprocal space, where the quasi-Bragg and incoming (or

outgoing) Bragg features of different Bragg orders intersect

(Savage et al., 1991; Kortright, 1991; Jergel et al., 1995;

Kaganer et al., 1995).

2.3. Quasi-specular diffuse scattering.

It is not so clear as in the previous case that the second and

third terms in (5) generate another type of resonant diffuse

scattering. It is quasi-specular diffuse scattering (Chernov et

al., 2002).1 Indeed, in spite of the fact that, according to the

de®nition, h�V�r�i � 0 the amplitude R�z� is an approxi-

mately linear function of z if the angle of incidence is quite far

from the Bragg angle and
R

z�V�r�dz 6� 0. Thus, if the

condition

�0 � �1 or � � k0z � k1z � 0 �7�
is met, there must be resonant ampli®cation of diffuse scat-

tering. Note that this scattering is not true specular scattering

because (7) is not exact and imposes no constraint on the

values of qx and qy. The resonance condition �� < 1, where � is

the total thickness of superlattices in the case of superlattice

Bragg re¯ection or the wave extinction depth in the case

of substrate Bragg re¯ection, allows one to estimate the

spreading of quasi-specular feature in the qx direction:

�qx �
tan �0

�
:

Thus, quasi-specular diffuse scattering occurs in a very narrow

(in the qx direction) region near the true specular signal in the

reciprocal space. The usual measurements with integration of

intensity in the qy direction (Fig. 1) do not allow one to

observe clearly this type of diffuse scattering. The use of

azimuthal experimental schemes with the measurements of

diffuse scattering intensity versus qy (Kortright & Fischer-

Colbrie, 1987; Salditt et al., 1994; Salditt, Metzger, Brandt et

al., 1995; Salditt, Metzger, Peisl et al., 1995; Salditt et al., 1996)

allows one to overcome this problem (Chernov et al., 2002).

In contrast to the previous case, the non-conformal part of

�V�r� does not give a contribution to the cross section of

quasi-specular diffuse scattering.

In the vicinity of the Bragg point in the reciprocal space, all

the four terms of (5) interfere, forming a complicated struc-

ture. An experimental study of this structure is beyond the

scope of the present work owing to evident dif®culties, the

most important being domination of specular (and quasi-

specular) re¯ection intensity.

3. Experimental

An [(AlAs)9ML/(GaAs)9ML] � 80 superlattice was grown by

molecular beam epitaxy on a [001]-oriented GaAs substrate

with a buffer AlAs layer (~50 nm) in the Riber 32P system.

The growth was monitored by re¯ection high-energy electron

diffraction. The sample was characterized by X-ray diffraction

using Cu K� radiation from a conventional X-ray source. A

theoretical simulation of diffraction data obtained has allowed

us to conclude that the structure of the sample was practically

perfect.

X-ray diffuse-scattering measurements were performed

using synchrotron radiation (SR) from the VEPP-3 storage

ring and a triple-axis diffractometer with a primary channel-

cut single-crystal Si(111) monochromator and a Ge(111)

crystal collimator at the wavelength � = 0.154 nm. The

measurements were performed in the vertical plane so that the

crystal±monochromator, specimen and secondary crystal±

collimator were placed in the (+,+,+) geometry. The measured

vertical angular broadening of the diffractometer had a full

width at half-maximum (FWHM) of 1500. As for the horizontal1 A mention of this effect can be found also in Sinha et al. (1994).



plane, the horizontal size of the incident beam was about

1 mm and no secondary collimators for the scattered radiation

were used. Thus, the intensity of diffuse scattering was inte-

grated in the azimuthal (horizontal) direction. A scintillation

detector based on an FEU-130 photomultiplier with an

NaI(Tl) scintillator was used. The dynamic range of the

detector system was about 2 � 104. Calibrated copper foils

were used to increase the dynamic range of measurements.

The measured value of the miscut angle was found to be

about 0.23� and the miscut direction was slightly (~5�) off the

[110] direction. The main diffuse-scattering measurements

were performed in such way that the specular diffraction plane

de®ned by the incident and re¯ected wavevectors was along

the [110] crystallographic direction across the terrace steps.

4. Results and discussion

Diffraction maps of the 002 re¯ection and its ®rst-order low-

angle satellite are shown in Fig. 3. These maps were obtained

as a set of transverse scans (! scans, �0 � �1 � constant). The

vertical streaks in the maps correspond to the specular and

quasi-specular scattering. A horizontal sheet in Fig. 3(b)

corresponds to the quasi-Bragg diffuse scattering. It is marked

as QB. A similar feature can be seen in the upper map.

Although the quasi-Bragg scattering intensity in this case is

comparable to the case of satellite re¯ection, its relative value

compared to specular re¯ection intensity is remarkably

smaller. This fact is illustrated in Fig. 4, where the intensities of

the specular and off-specular scans are compared. As was

discussed in x2, this behavior of the quasi-Bragg scattering

means that contribution of strain variations to the diffuse-

scattering cross section is quite low. It is not surprising because

the epitaxic mismatch of AlAs and GaAs lattices is small.

The incoming and outgoing Bragg features are marked as

SL0 and SL1, corresponding to the superlattice Bragg angle, as

SB0 and SB1, corresponding to the substrate Bragg angle, and

as ST0 and ST1, corresponding to the satellite Bragg angle.

First, it is necessary to note that mapping of the 002 re¯ection

from the original substrate does not reveal any inclined

streaks. Moreover, besides the discussed features, the diffuse-

scattering intensity signal in this case was, at least, 10±100

times smaller compared to the case of the superlattice. It

allows us to conclude that the observed inclined streaks are

not caused by some experimental failures.
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Figure 3
Diffraction maps of (a) the 002 re¯ection and (b) its low-angle ®rst-order
satellite. The in-plane projection of the momentum transfer is plotted
parallel to the horizontal axis. The momentum transfer projection, normal
to the lateral planes, is plotted parallel to the vertical axis. The intensity is
shown on the logarithmic scale. Although the dynamical range of the
measurements was about 106, in order to show clearly the diffuse-
scattering ®ne structure, the high-intensity points were cut, which caused
the ®nal dynamical range of the maps to be about 104. The reported
diffuse-scattering features are presented as inclined streaks. Features
SB0,1 and SL0,1 correspond to the basic Bragg re¯ection from the
substrate and superlattice, respectively. The features ST0,1 correspond to
the satellite Bragg peak. Their indices correspond to two conditions when
the incoming or outgoing angle, respectively, is equal to the Bragg angle.
The feature marked as QB is the quasi-Bragg diffuse scattering.

Figure 4
(a) Specular (� ÿ 2�) and (b) off-specular [�� ���� ÿ 2�;�� � 0:002�]
scans through the 002 re¯ection and its ®rst- and second-order satellites.
Note that the intensities of the diffuse scattering (b) are approximately
equal for the basic re¯ection and its ®rst-order satellites. At the same
time, intensity of specular re¯ection (a) is almost ten times greater
compared to the satellites. The oscillations in the intensities are caused by
diffraction from the buffer layer.
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It is easy to see that cross section (5) is symmetrical relative

to the interchanging of indexes 0$ 1. That is not accidental.

Indeed, matrix element (4) can be considered as the scattering

amplitude �f �k0 ! k1� as well as the scattering amplitude

�f �ÿk1 !ÿk0�,2 which is a consequence of the so-called

reciprocity theorem ®rst formulated by Lorentz. This theorem

predicts that interchanging the spatial locations of the X-ray

source and detector cannot vary the intensity of the signal

detected (James, 1950). At the same time, the data obtained

(Fig. 3) reveal the superiority in intensity of the incoming

features over the outgoing ones. This discrepancy needs to be

discussed.

At ®rst sight, it seems that the intensity asymmetry relative

to the inversion of qx can be explained by the corresponding

asymmetry of �V�r� or by the fact that a normal to the

interfaces of layers and the [001] direction can be slightly

mismatched. But such disturbances must cause, in particular,

essential asymmetry in intensity of the quasi-Bragg scattering,

which is not observed. Moreover, such explanations predict

that sample rotation around the z axis through 180� must

invert the maps relative to the qx direction. But we ®nd that

this rotation does not cause any essential changes in the maps.

The incoming features were already observed to be more

intense compared to the corresponding outgoing features.

Maximal remarkable changes in intensity of the quasi-Bragg

scattering only near the satellite were observed when the

rotation angle was about �90�, which corresponds to the case

when the terraces are parallel to the specular diffraction plane.

Nevertheless, intensity of the quasi-Bragg scattering was

observed to be symmetrical in this case, too. Thus, the above

reasons cannot explain the discussed asymmetry. In the

following discussion, we will suppose that the roughness

anisotropy in lateral directions is not important.

The reciprocity theorem is valid in the case of a conserva-

tive system and is a sequence of the symmetry of Maxwell's

equations relative to time reversal (T invariance). Some

processes, which cause the dissipation of coherent wave

energy, lead to violation of the reciprocity theorem. Let us

consider this effect with the example of photoabsorption. Note

that the potential V0�z� is complex and demands the DWBA

modi®cation to be performed. Now the Hamiltonian is non-

Hermitian and does not allow one to calculate the scattering

amplitude as the simple matrix element (4). Nominally, the

scattering amplitude can be written in a form similar to

equation (4):

�f �k0 ! k1� �
1

4�
h ~E; k1ÿj�V�r�jE; k0i

� 1

4�

Z
Ek0
�V0� ~Eÿk1

�V�0 ��V�r� dr; �8�

where the designation ~E�V�0 � � h ~E; kÿj means that this

function is the renormalized solution of wave equation (1)

with the complex-conjugate scattering potential V�0 �r�, so that

j ~E; k1ÿi ! E�ÿk2
as Im�V0�r�� ! 0:

In spite of the simple form of (8), to obtain in the general case

the rigorous expression for the renormalized states j ~E; k1ÿi is

quite dif®cult and is beyond the scope of the present work, but

in some cases these states can be guessed starting from simple

physical reasons.

In the general case, the scattering amplitude (8) is not T

invariant but in some cases this symmetry can occur. For

example, if the incoming and outgoing angles are far from the

Bragg angle, it is possible to ignore the Bragg diffraction. In

this case, the states can be written in the following form:

jE; k0i � exp�ik0xx� ik0yy� ik0zz� exp��0z�; j ~E; k1ÿi
� exp�ik1xx� ik1yy� ik1zz� exp��1z�; �9�

where kx, ky and kz are the real components of k,

�0 � �=2 sin �0 and �1 � �=2 sin �1 are positive factors

introduced to describe photoabsorption, and � is the linear

coef®cient of photoabsorption. Equations (9) allow one to

obtain the cross section of quasi-Bragg diffuse scattering,

which can be written as

d�

d


� �
QB

� r2
0

Z
���r� exp��0z� �1zÿ iq � r� dr

���� ����2: �10�

The obtained cross section preserves the discussed symmetry,

which has a clear physical meaning. Indeed, let us consider

scattering from a defect located at depth h of the object.

Amplitude scattering from this defect is proportional to the

amplitude of the incident wave, which attenuates owing to

photoabsorption at the path length of h=sin �0. The amplitude

of the scattered wave attenuates at the path length h=sin �1.

The total path length of h�sinÿ1 �0 � sinÿ1 �1� is the same

for the scattering k0 ! k1 as well as for the scattering

ÿk1 !ÿk0. Thus, the reciprocity theorem is still true, but

only accidentally because the photoabsorption cross section

does not depend on the wave propagation direction.

As will be shown below in more detail, the discussed

symmetry can vanish if the wave extinction caused by

diffraction and scattering is taken into consideration resulting

in the appearance of a small term in the exponent of equation

(10), which is antisymmetric relative to the index interchange.

As a result, the cross section of quasi-Bragg scattering

becomes non-T-invariant in the general case, but the

symmetry discussed is still true if the electron density ���r� is

symmetrical along the z axis. Otherwise, the cross section

depends not only on the momentum transfer qx but on the sign

of kx also. This situation is very similar to the well known

effect that intensities of the hkl and �h �k�l re¯ections can be

unequal if the structure factor of this re¯ection is not

symmetrical and photoabsorption is included in the consid-

eration. Thus, the intensity of quasi-Bragg scattering of the

maps in Fig. 3 can be asymmetrical relative to the qz axis but

this asymmetry must be weak.

Now, let us show that the discussed effect of asymmetry is

more important in the case of incoming and outgoing Bragg

features. It is a rather complicated task to obtain analytical

2 Some asymmetry arises as a result of difference in the limits on integral (4),
which is known as a geometry factor. In the case of high-angle diffraction, the
in¯uence of this factor is not important.



expressions in this case. Nevertheless, qualitative analysis of

the in¯uence of photoabsorption on the intensity of the

incoming and outgoing Bragg features can be easily

performed. On the assumption of zero photoabsorption, the

cross section of the incoming Bragg scattering for an angle

of incidence equal to the Bragg angle (�B) and outgoing

angle equal to some angle � is exactly equal to the cross

section of the outgoing Bragg scattering for an angle of inci-

dence equal to � and outgoing angle equal to �B. At the same

time, the depth of penetration of the incident wave and,

consequently, the mean path of a scattered X-ray photon

through the sample medium are evidently different in these

cases. The fact that in the ®rst case this path is essentially

smaller allows one to conclude that under absorption condi-

tions the incoming Bragg feature must always be more intense

than the outgoing Bragg feature. In the assumption of a thick

superlattice (the superlattice thickness is much more than the

dynamical extinction depth), it is easy to estimate the degree

of asymmetry in the intensities of the incoming and outgoing

Bragg features

d�

d


� �
IBF

�
d�

d


� �
OBF

� exp
�

sin �B

�T ÿ 2��
� �

;

where T is the total thickness of the superlattice and � is the

dynamical extinction depth.

Although inclusion of photoabsorption into consideration

explains correctly the tendencies of diffuse-scattering beha-

vior, from the point of view of quantitative values this

explanation is not adequate. Indeed, the assumption of a thick

superlattice is not true in our case,

T�� 0:4 mm� � �;
and the discussed asymmetry must be weak. Thus, the

observed asymmetry (in the case of satellite Bragg re¯ection

the incoming feature intensity is 10±100 times greater than

that of the outgoing feature, depending on the value qz)

cannot be explained by photoabsorption.

Aside from photoabsorption, there is another channel of

dissipation of the coherent ®eld energy. It is diffuse scat-

tering itself. Note that the reciprocity theorem is a sequence

of time-reverse symmetry, but interfacial roughness inevi-

tably is of a statistical nature and any statistical system is

irreversible in time. Therefore, in general, the reciprocity

theorem cannot be applied to the case when the diffuse

scattering is not negligible relative to specular re¯ection.

This fact can be explained more clearly in terms of the

multichannel scattering theory. The incoherent diffuse scat-

tering can be considered as an additional reaction channel.

At the same time, coherent diffraction can be described by

the usual single-channel scattering theory introducing

imaginary corrections to the scattering potential, which

allows one to take into account dissipation of the coherent

®eld energy through the incoherent diffuse scattering

channel. Similar to the case of photoabsorption, these

corrections cause violation of the reciprocity theorem.

As was shown above, the asymmetry in intensities of

incoming and outgoing features can be caused by the differ-

ence in the mean X-ray photon path through the superlattice

medium. The same reason is evidently correct for the diffuse-

scattering channel of dissipation of coherent wave energy. But

similarly to photoabsorption in the approximation of a thin

superlattice, the asymmetry caused by this mechanism is also

weak. Nevertheless, there is another important source of

discussed asymmetry in this case. Before discussion of this, it is

necessary to note the following important difference between

the photoabsorption and diffuse-scattering channels of dissi-

pation of coherent wave energy. Even in the case of hard

photoabsorption, DWBA can be successfully applied to

calculate diffuse scattering from a superlattice, which is

impossible when energy dissipation is caused by diffuse scat-

tering. When the diffuse-scattering cross section is comparable

to or greater than the coherent diffraction cross section,

application of DWBA is unjusti®ed because this approxima-

tion takes into account only single diffuse-scattering events,

whereas, from the experimental point of view, it is impossible

to separate the coherent±diffuse and diffuse±diffuse channels.

At the same time, diffuse scattering is assumed not to be

negligible compared to coherent specular re¯ection. Indeed, if

this last assumption is not true, the symmetry in the intensities

of incoming and outgoing Bragg features is provided by the

reciprocity theorem. At ®rst sight, the assumption made

contradicts the fact that the intensity of specular re¯ections

measured using Cu K� radiation from a conventional source is

modeled successfully supposing a perfect structure for the

superlattice but, as it is shown below, this contradiction can be

solved.

In contrast to photoabsorption, the cross section of

diffuse scattering and, accordingly, the imaginary corrections

to the scattering potential depend strongly on the wave

propagation direction. As was shown above, DWBA predicts

that the peak diffuse-scattering cross section is achieved at

the Bragg angles of propagation. It gives the key to an

explanation why the incoming features dominate over the

outgoing features and not the converse. Indeed, if the angle

of incidence is far from the Bragg angle, the diffuse-scat-

tering cross section is low and, as a result, the intensity of

the outgoing Bragg feature is weak too. Otherwise, when the

angle of incidence is equal to the Bragg angle, the diffuse-

scattering intensity is high and multiple diffuse-scattering

events must be taken into account.3

As was shown above, the breakdown of DWBA and the

discussed asymmetry are closely related. On the other hand,

large-scale roughness is known (de Boer, 1996) to stimulate

the violation of Born or DWBA approximations, which can be

understood by taking into account that the diffuse-scattering

amplitude is proportional to the lateral size of roughness. Let

us consider the dependence of diffuse scattering on spatial

scales of roughness in more detail. An important diffraction

parameter is the average track length along the x axis of the
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3 The discussed strong dependence of the diffuse-scattering cross section on
the wave propagation direction is a reason why DWBA can be applied
successfully to calculate diffuse scattering except for the cases when the
incoming or outgoing angle is equal to the Bragg angle.
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X-ray photon in Bragg diffraction. In the approximation of a

thin superlattice, its value can be estimated by

Lc � T cot �0 � 1:5 mm:

Roughness on a scale shorter than this will destroy effectively

Bragg diffraction from a superlattice. It is reasonable to call it

microroughness.

As for the opposite case, macroroughness will not affect

Bragg diffraction. Its in¯uence is restricted by the adiabatic

phase shifts in the wavefront in such a manner that the total

integrated scattering (TIS) remains unchanged.4 As a result of

phase shifts in the wavefront, the coherent plane wave decays,

forming an incoherent quasi-specular re¯ection as well as an

incoming Bragg feature. As was shown in x2, quasi-specular

scattering occurs in a very narrow region in the qx direction of

the reciprocal space close to the true specular re¯ection. From

the experimental point of view, it means that to divide the

signal measured into the quasi-specular and true specular

parts is a suf®ciently complicated task. On the other hand, the

quasi-specular scattering is caused by the conformal part of

the potential �V, whereas the Bragg features are caused

mainly by the non-conformal part. It is quite evident that

macroroughness has completely conformal behavior, which

explains the overwhelming domination of quasi-specular

scattering over the incoming Bragg scattering. In summary, the

above discussion explains why the theoretical calculations of

specular intensity based on a highly perfect superlattice

structure correspond well to a low-resolution diffraction

experiment but, at the same time, the measured scattering can

be essentially incoherent.

Comparison of diffraction maps of the basic lattice re¯ec-

tion in Fig. 3(a) and its ®rst-order low-angle satellite in Fig.

3(b) con®rms the conclusion that the asymmetry of intensity of

the incoming and outgoing features is caused by the decay of

the coherent X-ray ®eld through the diffuse-scattering

channel. Indeed, it is possible to show that energy dissipation

is lower in the case of the 002 re¯ection compared to the case

of its satellite. As was mentioned above, although the super-

lattice interfacial roughness caused by terraces is the main

source of diffuse scattering in all cases, the mechanism of this

phenomenon is different for basic lattice re¯ections and for

satellites. The diffuse scattering around the basic lattice

re¯ection is caused mainly by lateral variations in lattice

strain. But the epitaxic lattice mismatch is small in our case.

Thus, the diffuse scattering provided by the lattice strain is

relatively weak. A different situation is realized in the case of

satellites. The interfacial roughness in¯uences the diffraction

directly. As a result, the portion of diffuse scattering in TIS

increases essentially. The comparison of specular and off-

specular scans in Fig. 4 con®rms this conclusion. Besides, the

data obtained (Fig. 3) allow us to estimate that at least 10±30%

of the intensity is diffuse scattering when the angle of inci-

dence is equal to the Bragg angle of the 002 re¯ection. In the

case of the satellite's Bragg angle, the intensity of diffuse

scattering exceeds essentially the intensity of the specular

re¯ection.5 As a result, the domination of diffuse scattering

in the case of the satellite explains that intensity asymmetry

under discussion is more evident in Fig. 3(b) than in

Fig. 3(a).

Note that features, which are similar to the incoming and

outgoing Bragg scattering, around small-angle Bragg re¯ec-

tions from superlattices (Kondrashkina et al., 1997; Stangl et

al., 1999), high-angle Bragg re¯ections (Darhuber et al., 1995)

and substrate lattice re¯ections (Koppensteiner et al., 1994;

Darhuber et al., 1995, 1996, 1997; Giannini et al., 1997;

Darhuber, Holy et al., 1998; Darhuber, Zhu et al., 1998; HolyÂ,

Darhuber, Stangl, Zerlauth et al., 1998; Zhuang et al., 2000)

were repeatedly observed. Sometimes these features were

explained as an instrumental artifact. Nevertheless, we are

sure that our reported features are not an experimental arti-

fact. Firstly, the measurements were accurately performed

using calibrated copper foils in order to measure intensity in

appropriate tolerance limits of the detector dynamical range.

Secondly, mapping of the 002 re¯ection from the origin

substrate does not reveal the features that are discussed.

As a rule, in contrast to our data, the features observed in

the cited works appeared in diffraction maps as single streaks.

In this connection, it is necessary to mark the importance of

spatial coherence of the incident X-ray beam for the Bragg

diffraction from multilayers and superlattices (Sinha et al.,

1998; Chernov et al., 2002). Spatial coherence of the incident

beam increases with the length scales of roughness that are

involved in diffraction. In turn, this long-scale roughness

causes further increase of the diffuse-scattering cross section.

For example, in our case the value of vertical (in the specular

diffraction plane) transverse coherence of the incident beam

was about 5 mm. It corresponds to the fact that the size in the x

direction of the coherently irradiated area was about 20 mm,

which is a rather modest value. Thus, it is reasonable to expect

that data obtained using SR sources with better spatial

coherence can reveal stronger domination of the incoming

diffuse-scattering features. Besides, the 002 re¯ection studied

in this work has a low structure factor. Hence, the diffuse-

scattering cross section is small, too. It is another reason that

allows us to observe the diffuse-scattering ®ne structure as

cross hairs of the incoming and outgoing streaks.

5. Conclusions

In conclusion, we have observed experimentally the resonant

features of X-ray diffuse scattering from the AlAs/GaAs

superlattice when the incoming or outgoing angle is nearly

equal to the Bragg angle of the wide-angle re¯ections from the

superlattice or substrate. The degree of domination in inten-

sity of the incoming feature over the outgoing one was shown
4 The discussed situation is very similar to the case when a normally incident
plane wave penetrates an inhomogeneous non-absorptive plate. Although the
total intensity of the output beam in this case is equal to the intensity of the
primary beam, the output beam can be completely incoherent.

5 Note that the TIS dependence versus the incoming angle, which can be
obtained from our data (Fig. 3), corresponds well to a re¯ectivity curve
calculated using the model of the structurally perfect sample.



to indicate the decay rate of the coherent X-ray ®eld through

the diffuse-scattering channel.
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